IMS beyond your imagination

To redefine the boundaries of what’s possible, you need an instrument that not only provides ultimate performance, but also adds unique capabilities. That’s exactly what the Cyclic IMS does! Equipped with a novel set of features, it delivers the perfect experimental toolset for IMS.

Cyclic IMS Acquisitions Types

Cyclic ion mobility has a unique circular path, which enables you to define your path length by simply performing multi-pass experiments. Ions of a given mobility range can be selected and passed around the device as many times as you need, allowing you to ‘zoom in’ on analytes of interest.

Cyclic Ion Mobility Device

More mobility resolution not solving your problem? Try advanced characterization experiments with the Cyclic IMS, whereby ions are selected by their ion mobility and subsequently reinjected with collision-induced dissociation to provide unique IMSn data. This revolutionary instrument combines this cyclic ion mobility capability with the latest Tof technology, providing mass resolution that ensures you see more detail in your sample than ever before.

With so much innovation, the Cyclic is a fantastic way to bring your lab to the forefront of scientific discovery, allowing you to confidently tackle new analytical challenges. Running the Cyclic with the new-look MassLynx software and data visualization tools provides the flexibility to design custom methodologies. The only limit is your imagination!

Creative scientists are constantly expanding the number of applications for the Cyclic; some highlights include:

  • Separating and quantifying individual compounds in complex biological matrices
  • Collision induced unfolding experiments on native proteins
  • Detailed and confidently characterizing compounds in petroleomics studies

A Cyclic Ion Mobility – Mass Spectrometry System

Cyclic Ion Mobility Mass Spectrometry Distinguishes Anomers and Open-Ring Forms of Pentasaccharides

Gas Phase Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Travelling Wave Device

Investigations into the performance of travelling wave enabled conventional and cyclic ion mobility systems to characterise protomers of fluoroquinolone antibiotic residues

"I'M Standing in the home of revolutionary technology development"
Kevin Giles
Scientific Fellow Waters Corporation

At Waters, we are dedicated to supplying our customers with instruments that break the boundaries of ion mobility spectrometry (IMS). I am proud to have developed technology that is unleashing our customers’ scientific creativity and help them make life-changing discoveries.

"I'M Seeing data that will signal the start of new discoveries"
Perdita Baran
Professor of Mass Spectrometry The University of Manchester

The latest ion mobility spectrometry (IMS) technology is enabling me to see more than ever before from my sample. With this valuable tool in our arsenal, my research team can comprehensively investigate complex molecular structures and make discoveries that will help shape the future of medicine.


  1. Investigations into pesticide charge site isomers using conventional IM and cIM systems. McCullagh M, Goscinny S, Palmer M, Ujma J. Talanta. 2021 Nov 1;234:122604. DOI:
  2. Molecular Networking of High-Resolution Tandem Ion Mobility Spectra: A Structurally Relevant Way of Organizing Data in Glycomics? Simon Ollivier, Mathieu Fanuel, Hélène Rogniaux, and David Ropartz. Analytical Chemistry. 2021; 93 (31), 10871-10878. DOI:
  3. High Resolution IMS-MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody. Evolène Deslignière, Thomas Botzanowski, Hélène Diemer, Dale Cooper-Shepherd, Elsa Wagner-Rousset, Olivier Colas, Guillaume Béchade 3 Kevin Giles, Oscar Hernandez-Alba, Alain Beck, Sarah Cianférani. J Am Soc Mass Spectrom. DOI:
  4. Toward Sequencing the Human Milk Glycome: High-Resolution Cyclic Ion Mobility Separations of Core Human Milk Oligosaccharide Building Blocks. Tyler L. Peterson and Gabe Nagy. Analytical Chemistry. 2021, 93, (27), 9397–9407. DOI:
  5. Cyclic Ion Mobility–Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase. Charles Eldrid, Aisha Ben-Younis, Jakub Ujma, Hannah Britt, Tristan Cragnolini, Symeon Kalfas, Dale Cooper-Shepherd, Nick Tomczyk, Kevin Giles, Mike Morris, Rehana Akter, Daniel Raleigh, and Konstantinos Thalassinos.J. Am. Soc. Mass Spectrom. 2021, 32, 6, DOI:
  6. Use of Cyclic Ion Mobility Spectrometry (cIM)-Mass Spectrometry to Study the Intramolecular Transacylation of Diclofenac Acyl Glucuronide. David Higton, Martin E. Palmer, Johannes P. C. Vissers, Lauren G. Mullin, Robert S. Plumb, and Ian D. Wilson. Anal Chem. 2021 93 (20), 7413-7421. DOI:
  7. Anomeric Retention of Carbohydrates in Multistage Cyclic Ion Mobility (IMSn): De Novo Structural Elucidation of Enzymatically Produced Mannosides. Simon Ollivier, Laurence Tarquis, Mathieu Fanuel, Ao Li, Julien Durand, Elisabeth Laville, Gabrielle Potocki-Veronese, David Ropartz, and Hélène Rogniaux. Anal Chem.. 2021 93 (15), 6254-6261. DOI:
  8. Exploring Complex Mixtures by Cyclic Ion Mobility High-Resolution Mass Spectrometry: Application Toward Petroleum. Christopher P. Rüger, Johann Le Maître, Julien Maillard, Eleanor Riches, Martin Palmer, Carlos Afonso, and Pierre Giusti. Analytical Chemistry 2021 93 (14), 5872-5881. DOI:
  9. Probing d- and l-Adrenaline Binding to β2-Adrenoreceptor Peptide Motifs by Gas-Phase Photodissociation Cross-Linking and Ion Mobility Mass Spectrometry. Yang Liu, Yue Liu, Marianna Nytka, Shu R. Huang, Karel Lemr, and František Tureček. J Am Soc Mass Spectrom. 2021, 32, 4, 1041–1052. DOI:
  10. Cyclic Ion Mobility Spectrometry Coupled to High-Resolution Time-of-Flight Mass Spectrometry Equipped with Atmospheric Solid Analysis Probe for the Molecular Characterization of Combustion Particulate Matter. Christopher P. Rüger*, Johann Le Maître, Eleanor Riches, Martin Palmer, Jürgen Orasche, Olli Sippula, Jorma Jokiniemi, Carlos Afonso, Pierre Giusti, Ralf Zimmermann. J. Am. Soc. Mass Spectrom. 2021, 32, 1, 206–217. DOI:
  11. Developments in tandem Ion mobility mass spectrometry. Charles Eldrid, Konstantinos Thalassinos. Biochem Soc Trans. 2020 Dec 18; 48 (6): 2457–2466. DOI:
  12. LESA cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections. Sisley EK, Ujma J, Palmer M, Giles K, Francisco A, Fernandez-Lima, Cooper HJ. Anal Chem. 2020, 92, 9, 6321–6326. DOI:
  13. Application of a novel cyclic ion mobility-mass spectrometer to the analysis of synthetic polymers: A preliminary evaluation. Eleanor Riches, Martin E. Palmer. Rapid Commun Mass Spectrom. 2020; 34( S2):e8710. DOI:
  14. Carbohydrate Isomer Resolution via Multi-site Derivatization Cyclic Ion Mobility-Mass Spectrometry. Kristin R. McKenna, Li Li, Andy Baker, Jakub Ujma, Ramanarayanan Krishnamurthy, Charles Liotta and Facundo Fernandez. The Analyst. 2019 Dec;144(24):7220-7226. DOI:
  15. An Analytical Perspective on Protein Analysis and Discovery Proteomics by Ion Mobility-Mass Spectrometry. Vissers J.P.C., McCullagh M. Paglia G., Astarita G. (eds) Ion Mobility-Mass Spectrometry. Methods in Molecular Biology, vol 2084. Humana, New York, NY. pp161-178. DOI:
  16. High-Resolution Ion Mobility Spectrometry-Mass Spectrometry of Isomeric/Isobaric Ribonucleotide Variants. T. Kenderdine, R. Nemati, A. Baker, M. Palmer, J. Ujma, M. Fitzgibbon, L. Deng, M. Royzen, J. Langridge, D. Fabris. J Mass Spectrom. 2020; 55:e4465. DOI:
  17. Isolation of Crude Oil Peaks Differing by ~m/z 0.1 via Tandem Mass Spectrometry using a Cyclic Ion Mobility-Mass Spectrometer. Eunji Cho, Eleanor Riches, Martin Palmer, Kevin Giles, Jakub Ujma, Sunghwan Kim. Anal Chem. 2019, 91, 22, 14268–14274. DOI:
  18. Ion‐Mobility Spectrometry Can Assign Exact Fucosyl Positions in Glycans and Prevent Misinterpretation of Mass‐Spectrometry Data After Gas‐Phase Rearrangement. Javier Sastre Toraño, Ivan A. Gagarinov, Gaël M. Vos, Frederik Broszeit, Apoorva D. Srivastava, Martin Palmer, James I. Langridge, Oier Aizpurua‐Olaizola, Victor J. Somovilla, P Geert‐Jan Boons. Angew. Chem. Int. Ed. 2019, 58, 17616. DOI:
  19. Structure Determination of Large Isomeric Oligosaccharides of Natural Origin through Multipass and Multistage Cyclic Traveling-Wave Ion Mobility Mass Spectrometry. Ropartz D, Fanuel M, Ujma J, Palmer M, Giles K, Rogniaux H. Anal. Chem. 2019, 91, 18, 12030–12037. DOI:
  20. Discrimination of Regioisomeric and Stereoisomeric Saponins from Aesculus hippocastanum Seeds by Ion Mobility Mass Spectrometry. Colson E, Decroo C, Cooper-Shepherd D, Caulier G, Henoumont C, Laurent S, De Winter J, Flammang P, Palmer M, Claereboudt J, Gerbaux P.  J. Am. Soc. Mass Spectrom. 2019. 30, 2228–2237. DOI:
  21. Historical, Current and Future Developments of Traveling Wave Ion Mobility Mass Spectrometry: A Personal Perspective. Iain D.G. Campuzano, Kevin Giles. TrAC Trends in Anal Chem, November 2019. 120, 115620. DOI:
  22. A Cyclic Ion Mobility-Mass Spectrometry System. Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, Green M. Anal. Chem. 2019. 91, 13, 8564–8573. DOI:
  23. Gas Phase Stability of Protein Ions in a Cyclic Ion Mobility Spectrometry Traveling Wave Device. Eldrid C, Ujma J, Kalfas S, Tomczyk N, Giles K, Morris M, Thalassinos K. Anal. Chem. 2019. 91, 12, 7554–7561. DOI:
  24. Cyclic Ion Mobility Mass Spectrometry Distinguishes Anomers and Open-Ring Forms of Pentasaccharides. Ujma J, Ropartz D, Giles K, Richardson K, Langridge D, Wildgoose J, Green M, Pringle S. J Am Soc Mass Spectrom. Jun 2019; 30(6):1028-1037. DOI:
  25. Investigations into the performance of travelling wave enabled conventional and cyclic ion mobility systems to characterise protomers of fluoroquinolone antibiotic residues. McCullagh M, Giles K, Richardson K, Stead S, Palmer M. Rapid Commun Mass Spectrom. 2019. 33( S2): 11– 21. DOI:
  26. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry. Haler JRN, Far J, Aqil A, Claereboudt J, Tomczyk N, Giles K, Jérôme C, De Pauw E. J. Am. Soc. Mass Spectrom. 2017. 28, 11, 2492–2499. DOI:
  27. Ion mobility-mass spectrometry: time-dispersive instrumentation. May JC, McLean JA. Anal. Chem. 2015. 87, 3, 1422–1436. DOI: